Respuesta :

Answer/Step-by-step explanation:

✔️Find <K using law of sines:

Thus,

[tex] \frac{sin(K)}{k} = \frac{sin(H)}{h} [/tex]

K = ??

k = 37 mm

H = 34°

h = 29 mm

Plug in the values

[tex] \frac{sin(K)}{37} = \frac{sin(34)}{29} [/tex]

Multiply both sides by 37

[tex] \frac{sin(K)}{37}*37 = \frac{sin(34)}{29}*37 [/tex]

[tex] sin(K) = \frac{sin(34)*37}{29} [/tex]

[tex] sin(K) = 0.713453014 [/tex]

[tex] K = sin^{-1}(0.713453014) [/tex]

[tex] K = 45.5 degrees [/tex] (nearest tenth)

✔️Find J:

m<J = 180° - (45.5° + 34°) (sum of ∆)

m<J = 100.5°

✔️Find j using Sine rule:

[tex] \frac{j}{sin(J)} = \frac{h}{sin(H)} [/tex]

J = 100.5°

j = ??

H = 34°

h = 29 mm

Plug in the values

[tex] \frac{j}{sin(100.5)} = \frac{29}{sin(34)} [/tex]

Multiply both sides by sin(100.5)

[tex] \frac{j}{sin(100.5)}*sin(100.5) = \frac{29}{sin(34)}*sin(100.5) [/tex]

[tex] j = \frac{29*sin(100.5)}{sin(34)} [/tex]

j = 51.0 mm (nearest tenth)