Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the chain rule and the standard derivatives

Given

y = f(g(x)) , then

[tex]\frac{dy}{dx}[/tex] = f'(g(x)) × g'(x) ← chain rule

[tex]\frac{d}{dx}[/tex] (tanx) = sec²x , [tex]\frac{d}{dx}[/tex] (cotx) = - csc²x

(c)

y = tan[tex]\sqrt{x}[/tex] = tan[tex]x^{\frac{1}{2} }[/tex]

[tex]\frac{dy}{dx}[/tex] = sec²[tex]\sqrt{x}[/tex] × [tex]\frac{d}{dx}[/tex] ([tex]x^{\frac{1}{2} }[/tex] )

    = sec²[tex]\sqrt{x}[/tex] × [tex]\frac{1}{2}[/tex][tex]x^{-\frac{1}{2} }[/tex]

    = sec²[tex]\sqrt{x}[/tex] × [tex]\frac{1}{2x^{\frac{1}{2} } }[/tex]

   = [tex]\frac{sec^2\sqrt{x} }{2\sqrt{x} }[/tex]

(d)

y = cot(1 + x)

[tex]\frac{dy}{dx}[/tex] = - csc²(1 + x) × [tex]\frac{d}{dx}[/tex] (1 + x)

   = - csc²(1 + x) × 1

   = - csc²(1 + x)