2.32 LAB: Musical note frequencies On a piano, a key has a frequency, say f0. Each higher key (black or white) has a frequency of f0 * rn, where n is the distance (number of keys) from that key, and r is 2(1/12). Given an initial key frequency, output that frequency and the next 4 higher key frequencies. Output each floating-point value with two digits after the decimal point, which can be achieved by executing cout << fixed << setprecision(2); once before all other cout statements. Ex: If the input is: 440.0 (which is the A key near the middle of a piano keyboard), the output is: 440.00 466.16 493.88 523.25 554.37

Respuesta :

Answer:

Explanation:

[tex]\text{This is a python code:}[/tex]

[tex]\text{import math}[/tex]

[tex]your {\_} {value 1 }= float(inpu \ t ())[/tex]

[tex]your{\_}value 2 = your{\_}value1*math.exp(1 * math.log(2) / 12)[/tex]

[tex]your{\_}value 3 = your{\_}value1*math.exp(2 * math.log(2) / 12)[/tex]

[tex]your{\_}value 4 = your{\_}value1*math.exp(3 * math.log(2) / 12)[/tex]

[tex]your{\_}value 5 = your{\_}value1*math.exp(4 * math.log(2) / 12)[/tex]

[tex]print('\{:.2f\} \{:.2f\} \{:.2f\} \{:.2f\} \{:.2f\}'.format(your\_value1, \ your\_value2, \ your\_value3,[/tex][tex]\ your\_value4, \ \ your\_value5))[/tex]

[tex]\mathbf{OUTPU \ T :}[/tex]

[tex]\mathbf{440.00 \ 466.16 \ 493.88 \ 523.25 \ 554.37}[/tex]