Respuesta :

Rewrite 64x1664x16 as (8x8)28x82.(8x8)28x82Pull terms out from under the radical, assuming positive real numbers.
[tex]8 x^{8} [/tex]

Answer:

[tex]8x^8[/tex]

Step-by-step explanation:

Given: [tex]\sqrt{64x^4}[/tex]

This can be written as: [tex]\sqrt{64}[/tex][tex]\sqrt{x^{16} }[/tex]

√64 is the perfect square number.

√64 = [tex]\sqrt{8^2}[/tex]

Here the square and square root will get cancelled, we get

√64 = 8

Now let's simplify [tex]\sqrt{x^{16} } = \sqrt{(x^{8}) ^2}[/tex] = [tex]x^{8}[/tex]

Using the power of power rule for exponents

[tex](a^{m})^n = a^{mn}[/tex]

Therefore, [tex]\sqrt{64x^16} = \sqrt{64} \sqrt{x^{16} } = 8x^8[/tex]