Answer:
The equation is "[tex]y=6 \ Cos(\frac{12}{5}x)-5[/tex]". A further explanation is described below.
Step-by-step explanation:
The given values are:
Period,
B = [tex]\frac{5 \pi}{6}[/tex]
= [tex]\frac{12}{5}[/tex]
Amplitude,
A = 6
Vertical translation down,
D = -5
As we know,
The equation of cosine function will be:
⇒ [tex]y=A \ Cos(Bx)+D[/tex]
On substituting the values in the above equation, we get
⇒ [tex]y=6 \ Cos(\frac{12}{5}x)+(-5)[/tex]
⇒ [tex]y=6 \ Cos(\frac{12}{5}x )-5[/tex]