Given the matrices A and B below, find A + B and 3A

Answer:
Step-by-step explanation:
A+B [tex]\left[\begin{array}{ccc}3&-3\\10&4^{\frac{1}{2} \\10&-1\end{array}\right][/tex] 3A[tex]\left[\begin{array}{ccc}6&-9\\0&15\\21&-6\end{array}\right][/tex]
The value of A+B is [tex]\left(\begin{array}{ccc}3&-3\\10&4.5\\10&-1\end{array}\right)[/tex] and the value of 3A is [tex]\left(\begin{array}{ccc}6&-9\\0&15\\21&-6\end{array}\right)[/tex] .
To add two matrices, we have to add the element present in the same position in the respective matrices.
(A+B)ij= Aij + Bij
where i is the no. of row and j is the no. of column.
In order to multiply a scalar by the matrix, we have to multiply that scalar with every element of the matrix.
nA= nAij
Here given matrix is
A= [tex]\left(\begin{array}{ccc}2&-3\\0&5\\7&-2\end{array}\right)[/tex]
and the other matrix is
B= [tex]\left(\begin{array}{ccc}1&0\\10&-1/2\\3&1\end{array}\right)[/tex]
The sum of the matrix is A+B= [tex]\left(\begin{array}{ccc}2&-3\\0&5\\7&-2\end{array}\right)[/tex]+ [tex]\left(\begin{array}{ccc}1&0\\10&-1/2\\3&1\end{array}\right)[/tex]
⇒ A+B =[tex]\left(\begin{array}{ccc}2+1&-3+0\\0+10&5+(-1/2)\\7+3&-2+1\end{array}\right)[/tex]
⇒ A+B= [tex]\left(\begin{array}{ccc}3&-3\\10&4.5\\10&-1\end{array}\right)[/tex]
the value of 3A= 3 [tex]\left(\begin{array}{ccc}2&-3\\0&5\\7&-2\end{array}\right)[/tex]= [tex]\left(\begin{array}{ccc}6&-9\\0&15\\21&-6\end{array}\right)[/tex]
Therefore the value of A+B is [tex]\left(\begin{array}{ccc}3&-3\\10&4.5\\10&-1\end{array}\right)[/tex] and the value of 3A is [tex]\left(\begin{array}{ccc}6&-9\\0&15\\21&-6\end{array}\right)[/tex] .
Learn more about the addition of matrices
here: https://brainly.com/question/18291235
#SPJ2