Respuesta :

Given:

A diagram of a circle O, [tex]arc(AB)=y^\circ, arc(CD)=(80+y)^\circ[/tex].

To find:

The measure of arc DC.

Solution:

According to the angle of intersecting chords theorem:

Angle at intersection of chords = Half of the sum of intercepted arcs.

Let [tex]\theta [/tex] be the angle between the intersection of chords AC and BD.

[tex]\theta +112^\circ=180^\circ[/tex]      (Linear pair)

[tex]\theta =180^\circ-112^\circ[/tex]

[tex]\theta =68^\circ[/tex]

Using the angle of intersecting chords theorem, we get

[tex]\theta=\dfrac{arc(AB)+arc(CD)}{2}[/tex]

[tex]68^\circ =\dfrac{y^\circ+(80+y)^\circ}{2}[/tex]

[tex]136^\circ =(80+2y)^\circ[/tex]

On simplification, we get

[tex]136=80+2y[/tex]

[tex]136-80=2y[/tex]

[tex]56=2y[/tex]

Divide both sides by 2.

[tex]28=y[/tex]

Now,

[tex]arc(DC)=(80+y)^\circ[/tex]

[tex]arc(DC)=(80+28)^\circ[/tex]

[tex]arc(DC)=108^\circ[/tex]

Therefore, the correct option is C.