Respuesta :

Given:

Consider the given function is:

[tex]f(x)=x^2-8x+13[/tex]

To find:

The average rate of change of the function over the interval [tex]-1\leq x\leq 6[/tex].

Solution:

The average rate of change of the function f(x) over the interval [a,b] is:

[tex]m=\dfrac{f(x_2)-f(x_1)}{x_2-x_1}[/tex]

We have,

[tex]f(x)=x^2-8x+13[/tex]

At [tex]x=-1[/tex],

[tex]f(-1)=(-1)^2-8(-1)+13[/tex]

[tex]f(-1)=1+8+13[/tex]

[tex]f(-1)=22[/tex]

At [tex]x=6[/tex],

[tex]f(6)=(6)^2-8(6)+13[/tex]

[tex]f(6)=36-48+13[/tex]

[tex]f(6)=1[/tex]

Now, the average rate of change of the function f(x) over the interval [tex]-1\leq x\leq 6[/tex] is:

[tex]m=\dfrac{f(6)-f(-1)}{6-(-1)}[/tex]

[tex]m=\dfrac{1-22}{7}[/tex]

[tex]m=\dfrac{-21}{7}[/tex]

[tex]m=-3[/tex]

Therefore, the average rate of change of the function f(x) over the interval [tex]-1\leq x\leq 6[/tex] is -3.