Prepare a Pareto chart of the possible causes for a student to fail a final examination in a university course.
Vehicles are identified by RFID tags in order to collect bridge tolls. The project manager is considering two different technologies for RFID readers. By sampling two different options, the following data are collected about the accuracy of the readers:
Option 1: 99, 98, 99, 94, 92, 99, 98, 99, 94, 90 Option 2: 98, 97, 97, 97, 98, 98, 97, 97, 98

Calculate the mean, mode, and standard deviation of the two options.

Respuesta :

Answer:

Option 1

[tex]\bar x_1 = 96.2[/tex]

[tex]Mode = 99[/tex]

[tex]\sigma_1 = 3.22[/tex]

Option 2

[tex]\bar x_2 = 97.4[/tex]

[tex]Mode = 97[/tex]

[tex]\sigma_2 = 0.499[/tex]

Explanation:

Given

[tex]Option\ 1: 99, 98, 99, 94, 92, 99, 98, 99, 94, 90[/tex]

[tex]Option\ 2: 98, 97, 97, 97, 98, 98, 97, 97, 98[/tex]

Required

The mean, mode and standard deviation of both options

Option 1

Calculate mean

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x_1 = \frac{99+ 98+ 99+ 94+ 92+ 99+ 98+ 99+ 94+ 90}{10}[/tex]

[tex]\bar x_1 = \frac{962}{10}[/tex]

[tex]\bar x_1 = 96.2[/tex]

Calculate mode

[tex]Mode = 99[/tex]

Because it has a frequency of 4 (more than other element of the dataset)

Calculate standard deviation

[tex]\sigma = \sqrt{\frac{\sum(x - \bar x)^2}{n}}[/tex]

[tex]\sigma_1 = \sqrt{\frac{(99-96.2)^2 +.............+(90-96.2)^2}{10}}[/tex]

[tex]\sigma_1 = \sqrt{\frac{103.6}{10}}[/tex]

[tex]\sigma_1 = \sqrt{10.36}[/tex]

[tex]\sigma_1 = 3.22[/tex]

Option 2

Calculate mean

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x_2 = \frac{98+ 97+ 97+ 97+ 98+ 98+ 97+ 97+ 98}{9}[/tex]

[tex]\bar x_2 = \frac{877}{9}[/tex]

[tex]\bar x_2 = 97.4[/tex]

Calculate mode

[tex]Mode = 97[/tex]

Because it has a frequency of 5 (more than other element of the dataset)

Calculate standard deviation

[tex]\sigma_2 = \sqrt{\frac{(98-97.4)^2+..............+ (98-97.4)^2}{9}}[/tex]

[tex]\sigma_2 = \sqrt{\frac{2.24}{9}}[/tex]

[tex]\sigma_2 = \sqrt{0.2489}[/tex]

[tex]\sigma_2 = 0.499[/tex]