Respuesta :

Answer:

[tex]y = 4x - 3\\Slope \ m_1 = 4[/tex]

EQUATION OF LINE PERPENDICULAR

[tex]Lines \ are \ perpendicular => m_1 \cdot m_2 = -1\\[/tex]

[tex]slope, m_2 = \frac{-1}{4}[/tex]

[tex]equation \ of \ the\ line \ passing \ through \ (-2, 2) \ slope ,m_2 :\\(y - y_2) =m_2(x - x_2)\\ (y - 2) = \frac{-1}{4} (x -(-2))\\\\y - 2 = \frac{-1}{4} (x +2)\\\\y = \frac{-1}{4}x - \frac{1}{2} + 2\\\\y = \frac{-1}{4}x + \frac{3}{2}[/tex]

EQUATION OF LINE PARALLEL

[tex]Lines \ are \ parallel => m_1 \cdot m_3 = 1\\slope, m_3 = \frac{1}{4}[/tex][tex]Equation \ of \ the \ line \ through \ (-2, 2) \ and \ slope, m_3:\\(y - y_3) =m_3(x - x_3)\\\\(y-2) = \frac{1}{4} (x - (-2))\\\\y-2 = \frac{1}{4}(x+2)\\\\y = \frac{1}{4}x + \frac{1}{2} +2\\\\y = \frac{1}{4}x + \frac{5}{2}[/tex]

Otras preguntas