Answer:
x  =  50*e∧ -t/100
Step-by-step explanation:
We assume:
1.-That the volume of mixing is always constant 300 gallons
2.-The mixing is instantaneous
Δ(x)t  =  Amount in  - Amount out
Amount  =  rate * concentration*Δt
Amount in  =  3 gallons/ min * 0  =  0
Amount out  = 3 gallons/min *  x/ 300*Δt
Then
Δ(x)t/Δt  =  - 3*x/300   Δt⇒0  lim Δ(x)t/Δt  =  dx/dt
dx/dt  =  - x/100
dx/ x  =  - dt/100
A linear first degree differential equation
∫ dx/x  =  ∫ - dt/100
Ln x  =  - t/100  +  C
initial conditions to determine C
t= 0 Â Â x = Â 50 pounds
Ln (50) = 0/100 * C
C = Â ln (50)
Then final solution is:
Ln x  =  - t/100  + Ln(50)  or
e∧ Lnx  =  e ∧ ( -t/100 + Ln(50))
x  =  e∧ ( -t/100) * e∧Ln(50)
x  = e∧ ( -t/100) * 50
x  =  50*e∧ -t/100