Respuesta :

[tex]\large\mathfrak{{\pmb{\underline{\blue{To\:find}}{\blue{:}}}}}[/tex]

The value of [tex]x[/tex].

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\longrightarrow{\green{x\:=\: 25° }}[/tex] 

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

We know that,

[tex]\sf\purple{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]

➪ 125° + [tex]x[/tex] + 30° = 180°

➪ [tex]x[/tex] + 155° = 180°

➪ [tex]x[/tex] = 180° - 155°

➪ [tex]x[/tex] = 25°

Therefore, the value of [tex]x[/tex] is 25°.

Now, the three angles of the triangle are 125°, 25° and 30°.

[tex]\large\mathfrak{{\pmb{\underline{\pink{To\:verify}}{\pink{:}}}}}[/tex]

✒ 125° + 25° + 30° = 180°

✒ 180° = 180°

✒ L. H. S. = R. H. S.

[tex]\boxed{Hence\:verified.}[/tex]

[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]

If we create a circle around the line it will equal 360. Half of the circle must equal 180. For the straight line we have 125 and 30. To get 180 we need a certain number. 180-155=25. The number that we are searching for is 25.