If f(x) and g(x) are equivalent, what must a be?
[f(x) and g(x) in the picture]

[tex] \frac{1}{ \frac{1}{3}x - 2 } + 5 = \frac{a}{x - 6} + 5 \\ \\ \frac{a}{x - 6} = \frac{1}{ \frac{1}{3}x - 2 } + 5 - 5 \\ \\\frac{a}{x - 6} = \frac{1}{ \frac{1}{3}x - 2 } \\ \\ a \: (\frac{1}{3}x - 2) = x - 6 \\ \\ a = \frac{x - 6}{\frac{1}{3}x - 2} \\ \\ a = \frac{x - 6}{ \frac{x - 6}{3} } \\ \\ a = (x - 6) \div \frac{x - 6}{3} \\ \\ a = (x - 6) \times ( \frac{3}{x - 6} ) \\ \\ a = 3[/tex]
I hope I helped you^_^