Find the missing term.

Replace the question mark (?) with (Drop down box) to make the equation true.

Answers in the drop down box...... A.) m+n B.) 0 C.) m-1 D.) -(m+n)

Find the missing term Replace the question mark with Drop down box to make the equation true Answers in the drop down box A mn B 0 C m1 D mn class=

Respuesta :

Equations are used to relate equal expressions.

The missing term is: [tex]\mathbf{ m -1}[/tex]

The equation is given as:

[tex]\mathbf{\frac{m - n}{m^2 - n^2} + \frac{?}{(m -1)(m -n)} = \frac{2m}{m^2 - n^2}}[/tex]

Express [tex]\mathbf{m^2 - n^2\ as\ (m - n)(m + n)}[/tex]

So, we have:

[tex]\mathbf{\frac{m - n}{(m - n)(m + n)} + \frac{?}{(m -1)(m -n)} = \frac{2m}{(m - n)(m + n)}}[/tex]

Multiply through by [tex]\mathbf{m - n}[/tex]

[tex]\mathbf{\frac{m - n}{m + n} + \frac{?}{m -1} = \frac{2m}{m + n}}[/tex]

Collect like terms

[tex]\mathbf{ \frac{?}{m -1} = \frac{2m}{m + n} - \frac{m - n}{m + n}}[/tex]

Take LCM

[tex]\mathbf{ \frac{?}{m -1} = \frac{2m - m + n}{m + n} }[/tex]

[tex]\mathbf{ \frac{?}{m -1} = \frac{m + n}{m + n} }[/tex]

Divide [tex]\mathbf{ \frac{m + n}{m + n} }[/tex]

[tex]\mathbf{ \frac{?}{m -1} = 1}[/tex]

Cross multiply

[tex]\mathbf{ ? =(m -1)\times 1}[/tex]

[tex]\mathbf{ ? =m -1}[/tex]

Hence, the missing term is: [tex]\mathbf{ m -1}[/tex]

Read more about equations at:

https://brainly.com/question/15668451