Respuesta :

Answer:

b = 4[tex]\sqrt{3}[/tex]

Step-by-step explanation:

Using Pythagoras' identity in the right triangle

a² + b² = c² , that is

12² + b² = (2b)²

144 + b² = 4b² ( subtract b² from both sides )

144 = 3b² ( divide both sides by 3 )

48 = b² ( take square root of both sides )

[tex]\sqrt{48}[/tex] = b , then

b = [tex]\sqrt{16(3)}[/tex] = [tex]\sqrt{16}[/tex] × [tex]\sqrt{3}[/tex] = 4[tex]\sqrt{3}[/tex]

Using Pythagoras theorem, the length of side [tex]b[/tex] is [tex]4\sqrt{3}[/tex].

The three sides of a right angled triangle is [tex]a, b[/tex], and [tex]c[/tex].

[tex]a=12, c=2b[/tex].

[tex]c[/tex] is the hypotenuse,

Using Pythagoras theorem

So, [tex]c^2=a^2+b^2[/tex]

[tex](2b)^2=(12)^2+b^2[/tex]

[tex]4b^2=144+b^2[/tex]

[tex]4b^2-b^2=144[/tex]

[tex]3b^2=144[/tex]

[tex]b^2=\frac{144}{3}[/tex]

[tex]b^2=48[/tex]

[tex]b=\sqrt{48}[/tex]

[tex]b=4\sqrt{3}[/tex]

So, the length of side [tex]b[/tex] is [tex]4\sqrt{3}[/tex].

Learn more about Pythagoras theorem here:

https://brainly.com/question/343682?referrer=searchResults

Ver imagen kobenhavn