Respuesta :

Answer:

V ≈ 552.9 cm³

Step-by-step explanation:

The volume (V) of a cylinder is calculated as

V = πr²h ( r is the radius and h the height ) , then

V = π × 4² × 11 = π × 16 × 11 = 176π ≈ 552.9 cm³ ( to the nearest tenth )

Answer:

The volume of Coke can is 552.64 cm².

Step-by-step explanation:

Given :

  • ✧ Radius of Coke can = 4 cm.
  • ✧ Height of Coke can = 11 cm.

To Find :

  • ✧ Volume of Coke can

Using Formula :

[tex]{\star{\small{\underline{\boxed{\sf{\red{V_{(Can)} = \pi{r}^{2}h}}}}}}}[/tex]

  • ✧ V = Volume
  • ✧ π = 3.14
  • ✧ r = radius
  • ✧ h = height

Solution :

Here's the Coke can is in cylindrical form.

So, finding the volume of Coke can by substituting the values in the formula :

[tex]{\dashrightarrow{\pmb{\sf{Volume_{(Can)} = \pi{r}^{2}h}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(4)}^{2} \times 11}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(4 \times 4)}\times 11}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {(16)}\times 11}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = 3.14 \times {16}\times 11}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{314}{100} \times {16}\times 11}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{314 \times 16 \times 11}{100}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{5024 \times 11}{100}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} = \dfrac{55264}{100}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Can)} \approx 552.64 \: {cm}^{2}}}}[/tex]

[tex]\star{\red{\underline{\boxed{\sf{Volume_{(Can)} \approx 552.64 \: {cm}^{2}}}}}}[/tex]

Hence, the volume of Coke can is 552.64 cm².