Which expression is equivalent to startroot startfraction 2 x superscript 5 baseline over 18 endfraction endroot? assume x greater-than-or-equal-to 0.

Respuesta :

The expression that is equivalent to [tex]\sqrt{\frac{2x^{5} }{18} }[/tex] is [tex]x^{2} \frac{\sqrt{x} }{3}[/tex].

The given expression is [tex]\sqrt{\frac{2x^{5} }{18} }[/tex].

We can write the above expression as [tex]\sqrt{\frac{2.x^{2} .x^{2} .x}{2*9} }[/tex]

What is the square root of [tex]x^{2}[/tex] and 9?

The square root of [tex]x^{2}[/tex] i.e. [tex]\sqrt{x^{2} } =x[/tex] and same for [tex]\sqrt{9} =3[/tex].

So, we can write the expression [tex]\sqrt{\frac{2.x^{2} .x^{2} .x}{2*9} }[/tex] as [tex]\frac{x.x\sqrt{x} }{3}[/tex].

So, [tex]\frac{x.x\sqrt{x} }{3}= x^{2} \frac{\sqrt{x} }{3}[/tex].

Therefore, the expression that is equivalent to [tex]\sqrt{\frac{2x^{5} }{18} }[/tex] is [tex]x^{2} \frac{\sqrt{x} }{3}[/tex].

To get more about exponents visit:

https://brainly.com/question/15715630