Respuesta :
Answer:
- [tex]\boxed{\sf{-\dfrac{12}{7} }}[/tex]
Step-by-step explanation:
Use the slope formula.
[tex]\underline{\text{SLOPE FORMULA:}}[/tex]
[tex]\longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1} }[/tex]
y2=3
y1=(-9)
x2=1
x1=8
Rewrite the problem down.
[tex]\sf{\dfrac{3-(-9)}{1-8}=\dfrac{3+9}{1-8}=\dfrac{12}{-7}=\boxed{\sf{-\dfrac{12}{7} }}[/tex]
- Therefore, the slope is -12/7.
I hope this helps, let me know if you have any questions.
Answer:
[tex]\boxed{\text{Slope} = -\huge\text{(}\dfrac{12}{7}\huge\text{)}}[/tex]
Step-by-step explanation:
Slope formula:
[tex]\text{Slope} = \dfrac{\text{Rise}}{\text{Run}}} = \dfrac{y_{2} - y_{1}}{x_{2} - x_{1}}[/tex]
Using the coordinates (8, -9) and (1, 3), we obtain the following:
- First point = (x₁, y₁) = (8, 9) = x₁ = 8 y₁ = 9
- Second point = (x₂, y₂) = (1, 3) = x₂ = 1 y₂ = 3
Substitute the coordinates of both the points in the slope formula to obtain the fraction that represents the slope.
[tex]\implies \text{Slope} = \dfrac{3 - (- 9)}{1 - 8}[/tex]
To obtain a specific fraction or whole number that represents the slope, we need to simplify the numerator and the denominator.
[tex]\implies \text{Slope} = \dfrac{3 + 9}{-7}[/tex]
[tex]\implies \text{Slope} = \dfrac{12}{-7}[/tex]
Use parenthesis and take out the "negative sign" from the denominator.
[tex]\implies \boxed{\text{Slope} = -\huge\text{(}\dfrac{12}{7}\huge\text{)}}[/tex]