Respuesta :

Answer:

  • [tex]\boxed{\sf{-\dfrac{12}{7} }}[/tex]

Step-by-step explanation:

Use the slope formula.

[tex]\underline{\text{SLOPE FORMULA:}}[/tex]

[tex]\longrightarrow: \sf{\dfrac{y_2-y_1}{x_2-x_1} }[/tex]

y2=3

y1=(-9)

x2=1

x1=8

Rewrite the problem down.

[tex]\sf{\dfrac{3-(-9)}{1-8}=\dfrac{3+9}{1-8}=\dfrac{12}{-7}=\boxed{\sf{-\dfrac{12}{7} }}[/tex]

  • Therefore, the slope is -12/7.

I hope this helps, let me know if you have any questions.

Answer:

[tex]\boxed{\text{Slope} = -\huge\text{(}\dfrac{12}{7}\huge\text{)}}[/tex]

Step-by-step explanation:

Slope formula:

[tex]\text{Slope} = \dfrac{\text{Rise}}{\text{Run}}} = \dfrac{y_{2} - y_{1}}{x_{2} - x_{1}}[/tex]

Using the coordinates (8, -9) and (1, 3), we obtain the following:

  • First point       =  (x₁, y₁)   =  (8, 9)   =  x₁ = 8     y₁ = 9
  • Second point =  (x₂, y₂)  =   (1, 3)   =  x₂ = 1     y₂ = 3

Substitute the coordinates of both the points in the slope formula to obtain the fraction that represents the slope.

[tex]\implies \text{Slope} = \dfrac{3 - (- 9)}{1 - 8}[/tex]

To obtain a specific fraction or whole number that represents the slope, we need to simplify the numerator and the denominator.

[tex]\implies \text{Slope} = \dfrac{3 + 9}{-7}[/tex]

[tex]\implies \text{Slope} = \dfrac{12}{-7}[/tex]

Use parenthesis and take out the "negative sign" from the denominator.

[tex]\implies \boxed{\text{Slope} = -\huge\text{(}\dfrac{12}{7}\huge\text{)}}[/tex]