214643
contestada

if the function y= -3 cos(2x) has been translated 2 units up, then what is the new range of the function?

Respuesta :

Answer:

Range:  -1 ≤ y ≤ 5

Step-by-step explanation:

Translations

For a > 0

[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]

Parent function: y = -3 cos(2x)

Translated 2 units up:  y = -3 cos(2x) + 2

Range of y = cos(2x) :  -1 ≤ y ≤ 1

Range of Parent function y = -3 cos(2x)  :  -3 ≤ y ≤ 3

Range of new function y = -3 cos(2x) + 2:  -1 ≤ y ≤ 5