Answer:
Approximately [tex]5.85 \times 10^{3}\; {\rm J}[/tex] assuming no energy loss to the surroundings of the water in this beaker.
Explanation:
Let [tex]c[/tex] denote the specific heat of a material. The energy [tex]Q[/tex] required to raise the temperature of [tex]m[/tex] (mass) of this material by [tex]\Delta T[/tex] (change in temperature) is:
[tex]Q = c\, m\, \Delta T[/tex].
In this question, it is given that the specific heat of water is [tex]c = 4.18\; {\rm J \cdot g^{-1}\cdot K^{-1}}[/tex]. It is also given that the mass of the water in this beaker is [tex]m = 124.9\: {\rm g}[/tex].
The change in the temperature is:
[tex]\Delta T = (33.5 - 22.3)\; {\rm K} = 11.2\; {\rm K}[/tex].
Assume that there is no heat loss to the surroundings of the water in this beaker. Energy required to achieve this change in temperature would be:
[tex]\begin{aligned}Q &= c\, m\, \Delta T \\ &= 4.18 \; {\rm J \cdot g^{-1}\cdot K^{-1}} \times 124.9\; {\rm g} \times (33.5 - 22.3)\; {\rm K} \\ &= 4.18 \; {\rm J \cdot g^{-1}\cdot K^{-1}} \times 124.9\; {\rm g} \times 11.2 \; {\rm K} \\ &\approx 5.85 \times 10^{3}\; {\rm J}\end{aligned}[/tex].