contestada

y varies inversely as x and y = 11 when x = 8. Determine the value of y when x = 16

22
5.5
17
34

Respuesta :

[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]

Let's get started ~

According to question :

[tex]\sf \dashrightarrow y \propto \dfrac{1}{x} [/tex]

[tex]\sf \dashrightarrow y = k\dfrac{1}{x} [/tex]

  • where, k = proportionality constant

Now, we have been given that when y = 11, x = 8

Let's plug these values in equation to find value of k ~

[tex]\sf \dashrightarrow 11 = k \cdot\dfrac{1}{8} [/tex]

[tex]\sf \dashrightarrow k = 11 \times 8[/tex]

[tex]\sf \dashrightarrow k =88[/tex]

we got the value of proportionality constant. now we have been asked to find the value of y when x = 16

So, let's use the equation ~

[tex]\sf \dashrightarrow y = k \cdot\dfrac{1}{x} [/tex]

[tex]\sf \dashrightarrow y = 88\cdot\dfrac{1}{16} [/tex]

[tex]\sf \dashrightarrow y = \dfrac{11}{2} [/tex]

[tex]\sf \dashrightarrow y = 5.5[/tex]

I hope you understood the whole procedure ~