Respuesta :
- (-7,7)
- (4,1)
Slope:-
- m=1-7/4+7
- m=-6/11
Equation in point slope form
- y-7=-6/11(x+7)
Option A
Answer:
[tex]\textsf{A)} \quad y-7=-\dfrac{6}{11}(x+7)[/tex]
Step-by-step explanation:
Step 1: Find the slope
Define the points:
[tex]\textsf{let}\:(x_1,y_1)=(-7,7)[/tex]
[tex]\textsf{let}\:(x_2,y_2)=(4,1)[/tex]
Use the slope formula to find the slope:
[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{1-7}{4-(-7)}=-\dfrac{6}{11}[/tex]
Step 2: Find the equation
Use the found slope from step 1 together with one of the given points in the point-slope form of a linear equation:
[tex]\implies y-y_1=m(x-x_1)[/tex]
[tex]\implies y-7=-\dfrac{6}{11}(x-(-7))[/tex]
[tex]\implies y-7=-\dfrac{6}{11}(x+7)[/tex]
Conclusion
Therefore, the equation of the line that passes through the points (-7, 7) and (4, 1) is:
[tex]y-7=-\dfrac{6}{11}(x+7)[/tex]