Respuesta :

Answer:

[tex]\sf 2^{(n+1)}[/tex]

Step-by-step explanation:

Explicit formula is used to represent all the terms of the geometric sequence using a single formula.

  [tex]\sf \boxed{\bf t_n=ar^{(n-1)}}[/tex]

Here, a is the first term.

r is the common ratio.

r = second term ÷ first term

4, 8,16,32,64,.....

    a = 4

    r = 8 ÷4 = 2

[tex]\sf t_n =4*2^{(n-1)}[/tex]

    [tex]\sf = 4*2^n * 2^{(-1)}\\\\ = 4*2^n*\dfrac{1}{2}\\\\ = 2*2^n[/tex]

   [tex]\sf = 2^{(n+1)}[/tex]