Respuesta :

Given that there is a cart of mass, m = 0.12 kg moving with initial speed of, u1 = 0.45 m/s and it collides with another cart of mass, m = 0.12 kg with initial speed, u2 = 0 m/s

We have to find the initial and final kinetic energy.

(a) Initial kinetic energy,

[tex]\begin{gathered} K\mathrm{}E.1=\frac{1}{2}mv^2 \\ =\frac{1}{2}\times0.12\times(0.45)^2 \\ =0.012\text{ J} \end{gathered}[/tex]

According to the conservation of linear momentum,

[tex]mu1+mu2=2mv[/tex]

Here, v is the final speed.

[tex]\begin{gathered} 0.12\times0.45=2\times0.12\times v \\ v=\frac{0.45}{2} \\ =0.225\text{ m/s} \end{gathered}[/tex]

Here, the final speed is 0.225 m/s.

(b) The formula to find kinetic energy is

[tex]K\mathrm{}E\mathrm{}=\frac{1}{2}(2m)v^2[/tex]

Substituting the values, we get

[tex]\begin{gathered} K\mathrm{}E\mathrm{}=0.12\times(0.225)^2 \\ =6.075\times10^{-3}\text{ J} \end{gathered}[/tex]

Hence the kinetic energy is 6.075 x 10^(-3) J.