Complete the steps of the derivation of the quadratic formula. Step 2: Step 3: Step 4: Step 5:

Answer:
To complete the derivation of the quadratic equation:
Given:
[tex](x+\frac{b}{2a})^2-\frac{b^2-4ac}{4a^2} = 0[/tex]
Add both sides [tex]\frac{b^2-4ac}{4a^2}[/tex] we have;
[tex](x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}[/tex]
Taking square root both sides we have;
⇒[tex](x+\frac{b}{2a})= \pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex]
⇒[tex]x+\frac{b}{2a} =\pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]
Subtract [tex]\frac{b}{2a}[/tex] from both sides we have;
[tex]x =-\frac{b}{2a} \pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]
Therefore, complete derivation for the quadratic equation is:
Step 1.
[tex](x+\frac{b}{2a})^2-\frac{b^2-4ac}{4a^2} = 0[/tex]
Step 2.
[tex](x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}[/tex]
Step 3.
[tex](x+\frac{b}{2a})= \pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex]
Step 4.
[tex]x+\frac{b}{2a} =\pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]
Step 5.
[tex]x =-\frac{b}{2a} \pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]
or
[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]