Respuesta :

Given the triangle ΔABC as shown below:

Required: value of x.

Step 1:

Using 30° as the focus angle, label the sides of the triangle.

Thus,

[tex]\begin{gathered} AB\Rightarrow hypotenuse \\ AC\Rightarrow adjacent \\ BC\Rightarrow opposite \end{gathered}[/tex]

Step 2:

Evaluate the length x

[tex]\begin{gathered} \tan \text{ 30 = }\frac{opposite}{adjacent} \\ \tan \text{ 30 = }\frac{BC}{AC} \\ \text{but tan 30 = }\frac{\sqrt{3}}{3} \\ \text{thus,} \\ \frac{\sqrt[]{3}}{3}\text{ = }\frac{\sqrt[]{2}}{x} \\ x\times\sqrt[]{3}\text{ = }\sqrt[]{2}\text{ }\times\text{ 3} \\ \Rightarrow x\text{ = }\frac{3\sqrt[]{2}\text{ }}{\sqrt[]{3}}\text{ } \end{gathered}[/tex]

Step 3:

Rationalize the denominator.

Thus,

[tex]\begin{gathered} \text{ }\frac{3\sqrt[]{2}\text{ }}{\sqrt[]{3}}\text{ }\times\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ =\frac{3\sqrt[]{2}\text{ }\times\sqrt[]{3}}{3} \\ =\frac{3\sqrt[]{6}\text{ }}{3} \\ \text{Thus, } \\ x=\sqrt[]{6}\text{ } \end{gathered}[/tex]

Hence, the lenth of

Ver imagen ThayaS719854