There are 10+11+5= 26 colored marble. If we pick 1 blue marble and 1 green marble with replacement, we get
[tex]P(1\text{blue marbol)}\cdot P(1\text{ gr}een\text{ marble)=}\frac{C^{11}_1\times C^5_1}{C^{26}_2}[/tex]where C_n^k is the combinatorial term. Then, we get
[tex]P(1\text{blue marbol)}\cdot P(1\text{ gr}een\text{ marble)=}\frac{11\times5}{325}[/tex]which is equal to
[tex]P(1\text{blue marbol)}\cdot P(1\text{ gr}een\text{ marble)=}0.169[/tex]that is 0.169.