Respuesta :

The differentiation of the function  f(x) = sin⁻¹(3x⁵) is  [tex]15x^4/\sqrt{1-9x^{10}}[/tex].

What is function?

Function is a combination of different types of variable and constants.

A function is denoted by f(x).

The given function is,

f(x) = sin⁻¹(3x⁵)

Differentiate the given function with respect to x

f'(x) = d/dx(sin⁻¹(3x⁵))

The differentiation of sin⁻¹x is  [tex]1/\sqrt{1-x^2}[/tex],

f'(x) =[tex]1/\sqrt{1-(3x^5)^2}\cdot d/dx(3x^5)[/tex]

     = [tex]1/\sqrt{1-9x^{10}}\cdot 15x^4[/tex]

     = [tex]15x^4/\sqrt{1-9x^{10}}[/tex]

The differentiation of f(x) = sin⁻¹(3x⁵) is  [tex]15x^4/\sqrt{1-9x^{10}}[/tex].

To know more about Function on;

https://brainly.com/question/2411204

#SPJ1