Respuesta :

Answer:

11325

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{7.3 cm}\underline{Sum of the first $n$ terms of an arithmetic series}\\\\$S_n=\dfrac{1}{2}n[a+l]$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\ \phantom{ww}$\bullet$ $l$ is the last term.\\\phantom{ww}$\bullet$ $n$ is the number of terms.\\\end{minipage}}[/tex]

A positive integer is a whole number that is greater than zero.

Therefore:

  • The first term, a, of the first 150 positive integers is 1.
  • The last term, l, of the first 150 positive integers is 150.
  • The number of terms, n, is 150.

Substitute the values into the formula to find the sum of the first 150 positive integers:

[tex]\implies S_{150}=\dfrac{1}{2}(150)\left[1+150\right][/tex]

[tex]\implies S_{150}=75 \cdot 151[/tex]

[tex]\implies S_{150}=11325[/tex]