Respuesta :

Answer:

B. and E.

Step-by-step explanation:

The required points are [tex]\left(\dfrac{\pi}{3},\sqrt{3}\right)[/tex] and [tex]\left(\dfrac{7\pi}{4},-1\right)[/tex]. So, the second and fifth options are correct.

Important information:

The given equation is [tex]y=\tan x[/tex].

We need to find the points that are lying on the graph of the given equation.

Trigonometry:

Substitute [tex]x=-\dfrac{5\pi}{6}[/tex] in the given equation.

[tex]y=\tan \left(-\dfrac{5\pi}{6}\right)[/tex]

[tex]y=-\tan \left(\dfrac{5\pi}{6}\right)[/tex]

[tex]y=-\tan \left(\pi-\dfrac{\pi}{6}\right)[/tex]

[tex]y=\tan \left(\dfrac{\pi}{6}\right)[/tex]

[tex]y=\dfrac{1}{\sqrt{3}}\neq \dfrac{1}{\sqrt{3}}[/tex]

Substitute [tex]x=\dfrac{\pi}{3}[/tex] in the given equation.

[tex]y=\tan \left(\dfrac{\pi}{3}\right)[/tex]

[tex]y=\sqrt{3}[/tex]

Substitute [tex]x=\dfrac{\pi}{3}[/tex] in the given equation.

[tex]y=\tan \left(0\right)[/tex]

[tex]y=0[/tex]

Substitute [tex]x=\dfrac{3\pi}{4}[/tex] in the given equation.

[tex]y=\tan \left(\dfrac{3\pi}{4}\right)[/tex]

[tex]y=\tan \left(\pi-\dfrac{\pi}{4}\right)[/tex]

[tex]y=-\tan \left(\dfrac{\pi}{4}\right)[/tex]

[tex]y=-1[/tex]

Substitute [tex]x=\dfrac{7\pi}{4}[/tex] in the given equation.

[tex]y=\tan \left(\dfrac{7\pi}{4}\right)[/tex]

[tex]y=\tan \left(2\pi-\dfrac{\pi}{4}\right)[/tex]

[tex]y=-\tan \left(\dfrac{\pi}{4}\right)[/tex]

[tex]y=-1[/tex]

Only [tex]\left(\dfrac{\pi}{3},\sqrt{3}\right)[/tex] and [tex]\left(\dfrac{7\pi}{4},-1\right)[/tex] are on the graph of given equation. Therefore, the second and fifth options are correct.

Find out more about 'Trigonometry' here:

https://brainly.com/question/16682672