Respuesta :

Answer:

E. y = 2sin(2x − π )

Step-by-step explanation:

Follow the guide sent by the previous dude.

The function has a phase shift of pi/2 to the right is y = 2sin(2x - pi ).

What is the trigonometric function?

The basics of define three primary functions which are sine, cosine, and tangent.

The function has a phase shift of pi/2 to the right.

By definition, you have the phase shift is:

[tex]\rm asin(bx+c)\\\\ Phase \ shift=\dfrac{-c}{b}[/tex]

When you substitute the values from the function [tex]\rm y=2sin(2x-\pi)[/tex], where  [tex]\rm c=-\pi[/tex] and [tex]\rm b=2[/tex] , you obtain:

[tex]\rm Phase \ shift=\dfrac{-(-\pi)}{2}\\\\ Phase \ shift=\dfrac{\pi }{2}[/tex]

Hence, The function has a phase shift of pi/2 to the right is y = 2sin(2x - pi ).

Learn more about the trigonometry function here;

https://brainly.com/question/10596359


#SPJ2