Find the value of tan θ for the angle shown. A line is drawn from the origin through the point square root of thirty-three comma negative four. The angle theta is given as the measurement from the positive x axis counterclockwise to the line.

Respuesta :

If you draw this triangle on a graph as described, tan theta is -4(square root)33/33
Ver imagen whitesoxlady

Answer:

The value of tan θ is:

             [tex]\tan \theta=-\dfrac{4}{\sqrt{33}}[/tex]

Step-by-step explanation:

From the given right angled triangle we have:

          Base of the triangle i.e. OA is: √33 units

and Perpendicular length of triangle  i.e. AB is: 4 units

Hence, in the given right angled triangle we will use the trignometric ratio corresponding to the angle (360°-θ) as:

[tex]\tan (360-\theta)=\dfrac{perpendicular}{base}\\\\\\\tan (360-\theta)=\dfrac{4}{\sqrt{33}}[/tex]

As we know that:

[tex]\tan (360-\theta)=-\tan \theta[/tex]

Hence,

[tex]-\tan \theta=\dfrac{4}{\sqrt{33}}\\\\\\i.e.\\\\\\\tan \theta=-\dfrac{4}{\sqrt{33}}[/tex]

                     Hence, the answer is:

               [tex]\tan \theta=-\dfrac{4}{\sqrt{33}}[/tex]

Ver imagen lidaralbany