Respuesta :
Using the elimination method:
[tex] \left \{ {{y=-x+3} \atop {y=x-2}} \right. [/tex]
1. Add all members of two equations to each other:
[tex]y=-x+3[/tex]
[tex]y=x-2[/tex]
----------------------
[tex]2y=1[/tex]
[/tex]y=1/2=0.5[/tex]
2. Replace [tex]y[/tex] with found value in first equation to find [tex]x[/tex]:
[tex]0.5=-x+3[/tex]
[tex]x=3-0.5=2.5[/tex]
So, the solution is: [tex]x=2.5[/tex] and [tex]y=0.5[/tex]
[tex] \left \{ {{2x+3y=12} \atop {2x-y=4}} \right. [/tex]
1. Subtract members of second equation from members of first:
[tex]2x+3y=12[/tex]
[tex]2x-y=4[/tex]
----------------------
[tex]4y=8[/tex]
[/tex]y=8/4=2[/tex]
2. Replace [tex]y[/tex] with found value in first equation to find [tex]x[/tex]:
[tex]2x+3*2=12[/tex]
[tex]2x=12-6[/tex]
[tex]2x=6[/tex]
[tex]x=6/2=3[/tex]
So, the solution is: [tex]x=3[/tex] and [tex]y=2[/tex]
[tex] \left \{ {{5x-2y=-19} \atop {2x+3y=0}} \right. [/tex]
1. Multiply every member of first equation by 3 and every member of second equation by 2:
[tex]5x-2y=-19 | * 3[/tex] ⇒ [tex]15x-6y=-57[/tex]
[tex]2x+3y=0 | * 2[/tex] ⇒ [tex]4x+6y=0[/tex]
2. Add all members of two equations to each other:
[tex]15x-6y=-57[/tex]
[tex]4x+6y=0[/tex]
----------------------
[tex]19x=-57[/tex]
[tex]x=-57/19=-3[/tex]
3. Replace [tex]x[/tex] with found value in second equation to find [tex]y[/tex]:
[tex]2*(-3)+3y=0[/tex]
[tex]-6+3y=0[/tex]
[tex]3y=6[/tex]
[tex]y=6/3=2[/tex]
So, the solution is: [tex]x=-3[/tex] and [tex]y=2[/tex]
[tex] \left \{ {{y=-x+3} \atop {y=x-2}} \right. [/tex]
1. Add all members of two equations to each other:
[tex]y=-x+3[/tex]
[tex]y=x-2[/tex]
----------------------
[tex]2y=1[/tex]
[/tex]y=1/2=0.5[/tex]
2. Replace [tex]y[/tex] with found value in first equation to find [tex]x[/tex]:
[tex]0.5=-x+3[/tex]
[tex]x=3-0.5=2.5[/tex]
So, the solution is: [tex]x=2.5[/tex] and [tex]y=0.5[/tex]
[tex] \left \{ {{2x+3y=12} \atop {2x-y=4}} \right. [/tex]
1. Subtract members of second equation from members of first:
[tex]2x+3y=12[/tex]
[tex]2x-y=4[/tex]
----------------------
[tex]4y=8[/tex]
[/tex]y=8/4=2[/tex]
2. Replace [tex]y[/tex] with found value in first equation to find [tex]x[/tex]:
[tex]2x+3*2=12[/tex]
[tex]2x=12-6[/tex]
[tex]2x=6[/tex]
[tex]x=6/2=3[/tex]
So, the solution is: [tex]x=3[/tex] and [tex]y=2[/tex]
[tex] \left \{ {{5x-2y=-19} \atop {2x+3y=0}} \right. [/tex]
1. Multiply every member of first equation by 3 and every member of second equation by 2:
[tex]5x-2y=-19 | * 3[/tex] ⇒ [tex]15x-6y=-57[/tex]
[tex]2x+3y=0 | * 2[/tex] ⇒ [tex]4x+6y=0[/tex]
2. Add all members of two equations to each other:
[tex]15x-6y=-57[/tex]
[tex]4x+6y=0[/tex]
----------------------
[tex]19x=-57[/tex]
[tex]x=-57/19=-3[/tex]
3. Replace [tex]x[/tex] with found value in second equation to find [tex]y[/tex]:
[tex]2*(-3)+3y=0[/tex]
[tex]-6+3y=0[/tex]
[tex]3y=6[/tex]
[tex]y=6/3=2[/tex]
So, the solution is: [tex]x=-3[/tex] and [tex]y=2[/tex]