In the diagram, mFLI is 106°, mFLG = (2x – 1)°, mGLH = (x + 17)°, and mHLI = (4x – 15)°.


What is the measure of the smallest angle in the diagram?

15°29°32°45°

In the diagram mFLI is 106 mFLG 2x 1 mGLH x 17 and mHLI 4x 15What is the measure of the smallest angle in the diagram15293245 class=

Respuesta :

Step [tex]1[/tex]

Find the value of x

we know that

m∠FLI=m∠FLG+m∠GLH+m∠HLI ---------> equation [tex]1[/tex]

In this problem we have

m∠FLI=[tex]106[/tex]°

m∠FLG=[tex](2x-1)[/tex]°

m∠GLH=[tex](x+17)[/tex]°

m∠HLI=[tex](4x-15)[/tex]°

Substitute the values in the equation [tex]1[/tex]

[tex]106=(2x-1)+(x+17)+(4x-15)[/tex]

Combine like terms

[tex]106=(2x+x+4x)+(-1+17-15)[/tex]

[tex]106=(7x)+(1)[/tex]

[tex]7x=105[/tex]

[tex]x=15[/tex]°

Step [tex]2[/tex]

Find the value of each angle

Substitute the value of x in each angle

m∠FLG=[tex](2*15-1)=29[/tex]°

m∠GLH=[tex](15+17)=32[/tex]°

m∠HLI=[tex](4*15-15)=45[/tex]°

therefore

the answer is

The smallest angle in the diagram is [tex]29\ degrees[/tex]

Answer:

29*

Step-by-step explanation: