Which value for x makes the open sentence true?

4 • 3 - 2x < X to the 2nd power - 2

A. 0
B. 1
C. 2
D. 3

Same question.

6 • 7 – 5x + x2 ≥ x3 + x2

A. 5
B. 6
C. 4
D. 3



Which symbol creates a true sentence when x equals 3?

8 • 3 – 4x _____ 7(10 – x)

A. >
B. <
C. =
D. ≈



Which symbol creates a true sentence when x equals 8?

9 • 4 – 2x _____ 5(11– x)

A. =
B. >
C. <
D. ≈

Please help me A.S.Y.C.

Respuesta :

9. 4- 2(8) = -12
    55-40 = 15 
so C is true
 8. B
  
3 and 6 i dont know . seems : 4 . C & D are both correct 
                                                 6 . All correct

we know that

The easiest way to find the number that makes the statement true is to substitute the given answers into the equation.

so

Part 1)

[tex]4.3-2x < x^{2} -2[/tex]

a) For [tex]x=0[/tex]

[tex]4.3-2*0 < 0^{2} -2[/tex]

[tex]12 < -2[/tex] -----> is false

b) For [tex]x=1[/tex]

[tex]4.3-2*1 < 1^{2} -2[/tex]

[tex]10 < -1[/tex] -----> is false

c) For [tex]x=2[/tex]

[tex]4.3-2*2 < 2^{2} -2[/tex]

[tex]8 < 2[/tex] -----> is false

d) For [tex]x=3[/tex]

[tex]4.3-2*3 < 3^{2} -2[/tex]

[tex]6 < 7[/tex] -----> is true

therefore

the answer part 1) is the option D

[tex]x=3[/tex]

Part 2)

[tex]6*7-5x+x^{2} \geq x^{3} +x^{2}[/tex]

a) For [tex]x=5[/tex]

[tex]6*7-5*5+5^{2} \geq 5^{3} +5^{2}[/tex]

[tex]42 \geq 150[/tex] ----> is false

b) For [tex]x=6[/tex]

[tex]6*7-5*6+6^{2} \geq 6^{3} +6^{2}[/tex]

[tex]48 \geq 252[/tex] ----> is false

c) For [tex]x=4[/tex]

[tex]6*7-5*4+4^{2} \geq 4^{3} +4^{2}[/tex]

[tex]38 \geq 80[/tex] ----> is false

d) For [tex]x=3[/tex]

[tex]6*7-5*3+3^{2} \geq 3^{3} +3^{2}[/tex]

[tex]36 \geq 36[/tex] ----> is True

therefore

the answer Part 2) is the option D

[tex]x=3[/tex]

Part 3)

we have

[tex]8*3-4x\ (\ )\ 7*(10-x)[/tex]

For [tex]x=3[/tex]

[tex]8*3-4*3\ (\ )\ 7*(10-3)[/tex]

[tex]12\ (\ )\ 49[/tex]

we know that

[tex]12 < 49[/tex]

therefore

the answer Part 3)  is the option B

[tex]<[/tex]

Part 4)

we have

[tex]9*4-2x\ (\ )\ 5*(11-x)[/tex]

For [tex]x=8[/tex]

[tex]9*4-2*8\ (\ )\ 5*(11-8)[/tex]

[tex]20\ (\ )\ 15[/tex]

we know that

[tex]20 > 15[/tex]

therefore

the answer Part 4)  is the option B

[tex]>[/tex]