In a right triangle ΔABC, the length of leg AC = 5 ft and the hypotenuse AB = 13 ft. Find: Chapter Reference b The length of the angle bisector of angle ∠A.

Respuesta :

Answer:

The length of the angle bisector of angle ∠A is 6.01.

Step-by-step explanation:

It is given that length of leg AC = 5 ft and the hypotenuse AB = 13 ft.

Using pythagoras theorem

[tex](AB)^2=(BC)^2+(AC)^2[/tex]

[tex](13)^2=(BC)^2+(5)^2[/tex]

[tex]169=(BC)^2+25[/tex]

[tex]BC=12[/tex]

[tex]\sin A=\frac{\text{perpendicular}}{\text{hypotenuse}}[/tex]

[tex]\sin A=\frac{BC}{AB}[/tex]

[tex]A=\sin ^{-1}\frac{12}{13}[/tex]

[tex]A=67.38[/tex]

Bisector divides the angle in two equal parts, therefore,

[tex]A'=\frac{67.38}{2} =33.69[/tex]

In triangle ACD.

[tex]\cos A'=\frac{\text{Base}}{\text{Hypotenuse}}[/tex]

[tex]\cos A'=\frac{AC}{AD}[/tex]

[tex]\cos (33.69^{\circ})=\frac{5}{AD}[/tex]

[tex]0.832=\frac{5}{AD}[/tex]

[tex]AD=\frac{5}{0.832} =6.009\approx 6.01[/tex]

Therefore the length of the angle bisector of angle ∠A is 6.01.

Ver imagen DelcieRiveria