Respuesta :
Answer: Second option :
[tex]3x^2y(2x^2y^2+7xy -3)[/tex]
Step-by-step explanation:
Given expression [tex]6x^4y^3+21x^3y^2-9x^2y[/tex].
We need to find greatest common factor (GCF) of all the terms.
Let us write all terms in expanded form first.
[tex]6x^4y^3 = 2 \times 3 \times x \times x \times x \times x \times y \times y \times y[/tex]
[tex]21x^3y^2 = 3 \times 7 \times x \times x \times x \times y \times y.[/tex]
[tex]9x^2y=3 \times 3 \times x \times x \times y.[/tex]
We can see that first factor is 3 common, second factor is [tex]x \times x[/tex] and third factor is y.
Therefore, GCF would be [tex]3x^2y.[/tex]
Now, let us factor out GCF [tex]3x^2y[/tex] and keep the remaining terms inside parenthesis.
=[tex]3x^2y(2x^2y^2+7xy -3)[/tex]
Therefore, correct option is 2nd option [tex]3x^2y(2x^2y^2+7xy -3)[/tex].
Answer:
B is correct
Step-by-step explanation:
I took the test and got it right