The radioactive element americium-241 has a half-life of 432 years. How many years will it take a 10 gram mass of americium-241 to decay to 2.7 grams.

Respuesta :

Answer: 816 years

This problem can be solved using the Radioactive Half Life Formula:

[tex]A=A_{o}.2^{\frac{-t}{h}}[/tex]   (1)

Where:

[tex]A=2.7g[/tex] is the final amount of the material

[tex]A_{o}=10g[/tex] is the initial amount of the material

[tex]t[/tex] is the time elapsed  (the quantity we are asked to find)

[tex]h=432y[/tex] is the half life of americium-241

Knowing this, let's find [tex]t[/tex] from (1):

[tex]2.7g=(10g).2^{\frac{-t}{432y}}[/tex]  

[tex]\frac{2.7g}{10g}=2^{\frac{-t}{432y}}[/tex]  

[tex]0.27g=2^{\frac{-t}{432y}}[/tex]  

Applying natural logarithm in both sides:

[tex]ln(0.27g)=ln(2^{\frac{-t}{432y}})[/tex]  

[tex]-1.309=-\frac{t}{432y}ln(2)[/tex]  

[tex]-t=\frac{(-1.309)(432y)}{0.693}[/tex]  

Finally:

[tex]t=816y[/tex]