A wheel is rotating freely with an angular speed of 800 rev/min on a shaft whose rotational inertia is negligible. A second wheel, initially at rest and twice the rotational inertia of the first, is suddenly coupled to the same shaft. We have to find(a) the angular speed of the resultant combination of the shaft and the two wheels;(b) the fraction of the original rotational kinetic energy lost in the process.

Respuesta :

Answer:

a) [tex]\omega_2=41.89\ rad.s^{-1} [/tex]

b) [tex]\frac{\Delta KE}{KE_1} = 0.5[/tex]

Explanation:

Given:

rotational speed of the wheel 1, [tex]N=800\ rpm= \frac{2\pi}{60} \times 800 rad.s^{-1}[/tex]

Let the rotational inertia of the wheel 1 be, [tex]\rm I[/tex]

According to given, the rotational inertia of wheel 2, [tex]I_2=2I[/tex]

(a)

According to the law of conservation of angular momentum:

[tex]I.\omega=I_2.\omega_2[/tex]

[tex]I\times \frac{2\pi}{3} \times 40=2I\times \omega_2[/tex]

[tex]\omega_2=\frac{40\pi}{3}\ rad.s^{-1}[/tex]

[tex]\omega_2=41.89\ rad.s^{-1} [/tex]

(b)

initial kinetic energy:

[tex]KE_1=\frac{1}{2} I.\omega^2[/tex]

[tex]KE_1=0.5\times I\times 83.78^2[/tex]

[tex]KE_1=3509.54\ I[/tex]

Final kinetic energy:

[tex]KE_2=\frac{1}{2}I_2.(\omega_2)^2[/tex]

[tex]KE_2=0.5\times 2I\times 41.89^2[/tex]

[tex]KE_2=1754.77\ I[/tex]

∴the fraction of the original rotational kinetic energy lost in the process:

[tex]\frac{\Delta KE}{KE_1} =\frac{(3509.54-1754.77)}{3509.54}[/tex]

[tex]\frac{\Delta KE}{KE_1} = 0.5[/tex]