Respuesta :

Answer:

y = -3x + 6

Step-by-step explanation:

Any line perpendicular to

y = (1/3)x + 4

has a slope of -1/(1/3) = -3

and equation

y = -3x + b  .................(1)

If the line has an x intercept of 2 at (0,2), then

0 = -3(2) + b

solving

b = 6

By substituting b=6 into (1), the line required

y = -3x + 6

Answer:

y = -3x + 2

Step-by-step explanation:

y= [tex]\frac{1}{3}x +4[/tex]

Slope [tex]m_{1}=\frac{1}{3}[/tex]

slope of the perpendicular line [tex]m_{2}[/tex] = [tex]\frac{-1}{m_{1}}[/tex] = [tex]\frac{-1}{\frac{1}{3}}=-1*\frac{3}{1}=-3\\[/tex]

b= 2

Slope intercept form of required line: y = mx + b

y = -3x + 2