Respuesta :
Answer:
y = -3x + 6
Step-by-step explanation:
Any line perpendicular to
y = (1/3)x + 4
has a slope of -1/(1/3) = -3
and equation
y = -3x + b .................(1)
If the line has an x intercept of 2 at (0,2), then
0 = -3(2) + b
solving
b = 6
By substituting b=6 into (1), the line required
y = -3x + 6
Answer:
y = -3x + 2
Step-by-step explanation:
y= [tex]\frac{1}{3}x +4[/tex]
Slope [tex]m_{1}=\frac{1}{3}[/tex]
slope of the perpendicular line [tex]m_{2}[/tex] = [tex]\frac{-1}{m_{1}}[/tex] = [tex]\frac{-1}{\frac{1}{3}}=-1*\frac{3}{1}=-3\\[/tex]
b= 2
Slope intercept form of required line: y = mx + b
y = -3x + 2