Respuesta :

(I) [tex]-16y = 22 + 6x[/tex]

(II) [tex]-11y -4x = 15[/tex]

Get x alone in equation (I)

[tex]-16y = 22 + 6x\\6x = -16y - 22\\x = -\frac{16y}{6} - \frac{22}{6}\\x = - \frac{8y}{3} - \frac{11}{3}[/tex]

Insert in equation (II)

[tex]-11y - 4(-\frac{8y}{3} - \frac{11}{3}) = 15\\-11y + \frac{32y}{3} + \frac{44}{3} = 15\\-11y \cdot 3 + \frac{32y}{3} \cdot 3 + \frac{44}{3} \cdot 3 = 15 \cdot 3\\-33y + 32y + 44 = 45\\-33y + 32y = 45 - 44\\-y = 1\\y = -1[/tex]

Insert [tex]y = -1[/tex] in equation (I)

[tex]x = -\frac{8 \cdot (-1)}{3} - \frac{11}{3}\\x = \frac{8}{3} - \frac{11}{3}\\x = -1[/tex]