A state uses a combination of three letters (A-Z) followed by three digits (0-9) for their license plates. How many different license plates are possible? (Exact steps shown for credit)​

Respuesta :

A state uses a combination of three letters (A-Z) followed by three digits (0-9) for their license plates. So, there are 17576000 license plates can be made.

Given that, license plates consists of 3 letters followed by 3 digits.

Let the numbers on license plates be N

Let the letters on license plates be L

So, the license plate consisting of 3 letters and 3 digits will be LLLNNN.

Letters can be anything from A to Z.

There are 26 letter combinations for the first letter. That is applicable for the following 2 letters.

So, the combination for letters = 26×26×26 = 17576

Numbers can be anything from 0 to 9.

There are 10 combinations for each place.

So, the combination for numbers = 10×10×10 = 1000

Now, the combination for letters and numbers= 17576×1000

                                                                        =  17576000

Therefore, 17576000 license plates can be made.

Learn more about Combinations on

https://brainly.com/question/11732255

#SPJ1